Reactive Systems

Luca Cardelli
University of Oxford

Applied Systems Biology Course 2023-09-19

https://sites.google.com/view/applied-system-biology-course/

http://lucacardelli.name

Outline

L

 Reactive Systems
o Processes vs. Functions

* Processes and Chemistry

o Chemical modeling
o Biochemical modeling (complexation etc.)

 Modeling Combinatorial Systems

o General strong points of “agent-based”
or “reactive” modeling languages

Dynamic Interactions

T T~ T
possible bindings

\ binding

T

GH A T2

D ¢

\ modification

7
AI

fewer bindings

T
@D different bindings
~__

Mathematical modeling: What function does a protein compute?

1

Macromolecules and their Machines

. RCQU'O"'ion R .
What function does : :

a cell compute?

Gene Regulatory
Networks

Gene
Machine

leotide

L ad .
g
— @&
Holds receptors, actuators . ”'fmnspo,.f
Biochemical ~* hosts reactions Networks
Networks < Membrane

Machine

Aminoacids

Machine

Implements fusion, fission Phospholipid

Metabolism, Propulsion Confinement

Signal Processing curfoce ond Storage
Molecular Transport Eaace Bulk Transport

Features

Reactive Systems

Developed in Computer Science to get away from the strict
notion of input/output computation

Even more fundamentally, to get away from the very notion of
functions as mathematical modeling tools

We realized in the 60's-80s' that we could not practically
model/implement operating systems and computer networks as
imperative programs, because of combinatorial state explosion
(which is also pervasive in biology)

And we struggled theoretically to model them via appropriate
mathematical functions, because of concurrency and
nondeterminism (which are also pervasive in biology)

What function does the internet (or a protein / gene / membrane
/ cell) compute?

This led to a fundamental change in point of view of how to
model systems in general

1

L

How does X compute

'« Change the question from Whatto How

o F

o F

o F

OW C
OW C

OW C

oes an Operating System compute?
oes the Internet compute?
oes a Cell compute?

 |l.e.: what steps does X perform?

o We can talk about what steps a subsystem performs
in reactionto a stimulus from the environment

o And what are the local consequences of those steps

o (And this turns out to include functions as a special
case)

What is reactive computation?

L

=

* Functions

o Functions are supposed to terminate and give a final answer

o But if e.g. the internet terminates, it's useless: whatever answers
it gives, they are never final. And if a cell terminates, it's dead.

« Reactive Systems (by many names: agent-based, etc.)

o Systems that accept inputs and provide outputs, but not
necessarily in a "functional” way, e.g. because they have multiple
interaction points, they have internal state, or have "a mind of
their own” that does not even depend on the inputs.

o They reactto the environment.
The environment reacts to them.

o In this view computation is reaction, or more symmetrically is
/nteraction, or is communication when something is exchanged
during interaction.

Functions vs. Processes

We analyze the notion of "computation step” for functions,
and we generalize it to processes

(1) A"Process" is a component of a reactive system

Function Diagrams

o We use diagrams to emphasized simple computation steps

o (A function of two inputs would be a function of a single input that is a pair)

o Function composition (g o f)

N.B. we rename outto tempin f, and /into temp in g,
so they connect through their now common channel temp

Process Diagrams

Multiple input and multiple output channels

This is not a function of 2
inputs. Don't think And-gate (a
out, Boolean function with 2 in 1 out)

in, out, Think Flip-Flop (a "thing" with 2
independent set/reset inputs
and 2 separate outputs)

In “pure interaction” there is actually no difference between
input and output channels: they just interact symmetrically with
the environment

But in “communi_cation” there is a direction in which _
messages a received or sent. We may or may not label receive-
channels as “in” and send-channels as “out

Specific “channel names” become fundamental to describe how
processes interconnect (unlike functions, which have 1 default
iInput and 1 default output channel name)

1

Proces

"« Process composition (Q | R)

in,

A specific wiring is obtained
by (re)naming of the connections
ahead of time

Rules: P|O0=P
PIQ=Q]P
PI(QIR =FPIQ IR

(P| P =P ingeneral)

s Diagrams
QR

0 is the null process that has no channels

Functions as Processes

function N ///ﬂ// apply
f(X) — \/X —— output

X VX
Reactive \/
Diagram in out

“read from in into x: then write +/x to out”

read write channels
. \
R t .
e f = 2in(x): 'out(/x)

\ /

input output

Composing Functions

g(x) = (fo Nx) (=1(f(x))

Composing Functions

g(x) = (f o H)(x)

| X | m |¢¢x
i =l L =

“create a new channel and use it to compose two copies of f”

channel creation
141% hannel/ y
private chnanne composition

Reactive g N (V temp)/ /
Syntax 2in(x); 'temp(v/X) |

2temp(y); lout(v/y)

1

A Process that is not a Function

Reactive In, out,
Diagram in,

o out,

N L The ‘skeleton’

. ‘)&utomaton

Reactive lout
Skeleton P ‘

7ing lout, lout,

recursio
reactive P = ?2iN{(X); ?in,(y); lout,(x+y); P
- @ ?ins(z); lout,(v/2); lout,(22); O
\Choice

Ex. Vending Machine

coin
VM deliver
abort
refund

A candy for 2 coins

VM — shake
2coin(cl);
(?coin(c2); 'deliver(candy); VM

® ?abort(); 'refund(c1); VM " \deli
® ?shake(); 0) i
® ?shake(); O

?shake

Note that we are not describing the environment.

Dynamic Networks

L

« Here is where (static) diagrams fail,
and syntax Aas to take over

o Proliferation/degradation

P = 7?in(); (P | P)
P= ?in(); 0O

o Interface modification
P = ?in(x); Ix(); Q
A

o Biological (and software) networks do both
things a lot, as opposed to e.g. electrical networks

channel passing!

That’s n—calculus

L

« To compose processes P we need:

(with identity elem. 0)
(with x bound in P)
(equal to P | *P)

o Composition:
o Channel cration:
o Recursion:

P|P
(vx) P
7'<P

 To perform computation steps we need:

o Channel reading:
o Channel writing:
o Choice:

2c(x); P
Ic(M); P
Po P

(wit
(wit
(wit

n X bound in P)
N message M)

n identity elem. 0)

... and channels can be sent as messages!

r 1

Generalizing Functions and Automata

-

» Unlike functions...

o Processes have multiple, explicitly named, input and
output channels.

o Processes can run in parallel, can deadlock on their inputs,
and can be nondeterministic in their outputs.

 Unlike automata (FSA)...

o Processes can transmit data (not just change state).

o While automata ‘talk’ to input strings, processes ‘talk’ to
other processes: processes are communicating automata.

o Processes are not “finite state”; they can express
unbounded computation in time (divergence) and space
(proliferation).

o They have dynamic connectivity: networks can reshape
themselves.

The Kinetics
of Computation

1) how things move, in this case what steps they take and possibly at what rate.

Function Kinetics

L

-« Functions have a single kinetic law:
o Application rule: computes ‘?’que/y i@
If f(X) =4or M{X} then f(a) > M{a/x}

e.g.; f(x) =4o¢ NOL(X) then
f(true) - not(x){true/x} = not(true) » false

 No other kinetic rule is strictly required

o E.g., no arithmetic: “variable shuffling” is enough to compute
anything [Church/Turing]

« The application rule is Aow functions compute

Process Kinetics

e Processes have one kinetic law:

o Communication rule /may compute to

(Pc(x);Pix}) @ P* | (Ic(a);Q ®Q 5> Pla/x}|Q

V\
« plus one important identity:

/s the same as (not a computation step)

o Extrusion ru/e/
(vx)P) | Q =(vx)(PIQ) for x not occurring in Q

 No other kinetic rule is strictly required
o “channel shuffling” is enough to compute anything [Milner]

« The communication rule is Aow reactive systems
compute

Ex. VM In environment

VM = ?coin(cl); BUYER =
(?coin(c2); !deliver(candy); VM lcoin(10p);
® ?7abort(); 'refund(c1); VM lcoin(10p);
® ?shake(); 0) ?deliver(yum);
® ?shake(); O EAT
VM | BUYER
— ?coin(c2); !deliver(candy); VM | lcoin(10p); ?deliver(yum); EAT

® ?abort(); 'refund(10p); VM
® ?shake(); O

— ldeliver(candy); VM | 2deliver(yum); EAT

— VM | EAT

There can be a rate associated with each channel, determining the speed of interactions.
1

Equivalence

The "what does X compute?” question can be replaced by
equivalence: two systems compute the same thing (whatever that is)
if they can replace each other in every possible situation, according
to the kinetic laws.

Two functions are equivalent if they can replace each other in every
context made up by other functions (Extensionality)

o If they produce the same outputs from the same inputs.

o The Church-Rosser theorem states that the kinetic law for functions
leads to deterministic answers: this is non-trivial.

Two processes are equivalent if they can replace each other in every
environment made up by other processes (Contextual congruence)

o A proof technique for process equivalence is based on showing
bisimilarity. for each step one process can make, the other can choose
to make a similar step ending up again in equivalent processes.

o One of the main theorems states that bisimilarity is a congruence, i.e.,
that if two systems are bisimilar, then they can be exchanged for one
another in every environment with no observable difference.

Chemical Networks
as Reactive Systems

Chemical Systems

Reactions:

A, +A, - B, +B,

Deterministic reaction kinetics

d[A]/dt = -r[A,][A,] Mass Action Law

(assuming B;#A, for all i,j)

Stochastic reaction kinetics

Chemical Master Equation -> CTMC

As Reactive Systems

Uniquely-named asymmetric (A, # A,) reaction c:

c A+ A, " B, +B A reaction is ambiguous about how
] :] 2 the lhs species transfer to the rhs

channel with rate

Processes: /

A, =7c.: B (the name of the reaction becomes the channel)
1 r 1
- : The reactive system must
A, = Ic,; B, ysem
resolve the ambiguity
or: A, =?¢; B, or: A, =7?c; (B1 |Bz)
A, = Ic.: B, A, =lc.: 0

The (quantitative) kinetic laws for processes lead to a CTMC semantics.
E.g., with initial conditions 2A,|2A, the CTMC is:

I I

® >@ >@
2A]|2A2 A]|A2|B]|BZ ZB]|ZBZ

As Reactive Systems

Uniquely-named symmetric reaction c:
¢ A+A > B, +..+B,

Discrete reaction kinetics (A must interact with a copy of itself):

A = ?CI’/Z’ (B]||B|) D Icr/z, (Bi-l—] ||Bn) 0<i<n

With initial conditions A|A (two molecules), the CTMC is as follows;
note that each copy of A can do an input or an output, so there are
two possible paths to the outcome:

r/2

O That is: Q i >Q
AlA B.|...IB, AIA B|...|B.

r/2

From Reactions to Processes

" v A+B =k C4+C Interaction
v,: A+C —k, D Matrix
vy: C —k; E+F
v, F+F —>k, B

l

Fill the matrix by columns:

/

Degradation reaction v;: X ki P,
add t;P; to <X,v;>.
Asymmetric reaction v;: X+Y —Ki p,
add ?;P, to <X,v;> and !;0 to <Y,v,>
Symmetric reaction v;: X+X —Ki p.
add ?;P, and !:0 to <X,v,>

/

channels
(1 per reaction)
Viky | VYoke) | V3(k3) V4(k4//2)
A [2;(C|C)| 2.D
‘3 .‘Qi)) B ;0
wy [C ;0 [(EIF)
Q.
S v Mo
|
O v
as | E
~ F 2.8
I:0

1

A =44, (CIC) & ?vy,,D
B =1Vvy44),0

C =W42,0 @ 73;(EIF)
D=0

E=0

F = 444/20B @ V444,20

1

Read out the processes by rows:

Half-rate for
symmetric
reactions

k
A"LC

B C
v AL

Ki

2023-09-22

29-

r 1

Different Processes for the same Reactions

« That was a systematic way to translate reactions to
rocesses, akin to the way the stoichiometric matrix
eads systematically to generating mass action ODEs.

 There can be multiple reaction sKstems that produce the
same ODEs: reactions are finerthan ODEs.

* Here there can be multiple process systems that produce
the same reactions: processes are finer than reactions.

* Hence there can be better or worse ways to get
processes that match certain reactions.

« That is, different processes that produce more compact
and/or modular models, but with the same kinetics.

Ex: Catalysis

Two reactions, same catalyst C

o According to the general scheme the catalyst uses one channel
for each reaction it catalyzes
C=la;Cealb,;C

a: A+C->'C+B A=7a:B
b D+C->"C+E D=7b:E

o Modularizing: the catalyst has its own catalysis channel ¢, used
for all the reactions it catalyzes:

C=Ic,; C
A+C->rC+B A=7:B
D+C->'C+E D=7 E

o A very minor improvement in model size here, but these
improvement compound in larger models

1

Chemistry vs. n-calculus

Chemical reactions Reactive system (n)

rrA+B—>,C+D [EEN
ecome

s:C+D—>,A+B cord

®
1 line per
r reaction
k1

1 line per
C D component A - !r.kl; C becoAmes

C — ?Skz; A C not D!

B =2?r.D
D =Is, B

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.

The same "model”

Maps to : Maps to
aCTMC * aCTMC

A Petri-Net-like representation. Precise and dynamic
but not modular, scalable, or maintainable.

Biochemical Networks
as Reactive Systems

Molecules with State |

« Explosion of species, reactions, and state space.

Weet 5_: n modification sites
L . = 2" molecular states
Cdc25 = 2" ‘SDECiES’
— 2n i
@{% & 2" ODEs (mass action)
-4 |- - Cdc2
=l 3
D the master equation

P
)

Cde13 will have 2" ODEs for

Hym1 ::_D
Cigf +[j7 each molecule!

Cig2

Rum1 L r |
5 _. . >

L Lamina

Rum1
-E‘.‘P h:‘ltﬁ'-e
On-zet

BIOSILICO Vol. I, No. 5 November 2003

(b) Proposed improvements of graphical representation of

A graphical notation for iesion yeast 02
biochemical networks

Hiroaki Kitano

Connected Molecules

Further combinatorial explosion

n states

m states = nxm states 201 x 22 x ...

0% Rad3 _J

s

® Cski . Chki
(é Weel (J Mcs6 {Té) Cdc25 (é Lamin
[é Num1 oy

Weel @ Mes6) Cdc25 { Lamin
_hr14 Thrii <'I'hr1d. Thr E i—l"ﬂd- Thl"n} Thr$£ Thr&: Thrhl ThﬂE
+"’ Cdc?2 ?) € Cdc2 ‘r" Cdc2 c% o (;})
wns Tyrls . Byns ¢ -.PgTyns QTyr 5
>_»LCdc13 [Cdmaj

Theld Theis
; Cdc2 —

vriS

<
Rum

Cdc13 .' Cdc13
Cdc13

T

BioSiico

Figure 6. An example of the process diagram for part of the fission yeast cell cycle process represented in Figure 3. Temporal sequence of biochemical
processes are represented explicitly. Molecular species appear repeatedly along the interaction processes.

BIOSILICO Vol. I, No. 5 November 2003

A graphical notation for
biochemical networks

Hiroaki Kitano

X 2nm

BIG

lterated Connections (Polymers)

 ‘Infinite’ explosion

—A—A—A—A—

—A—B—A—

— A—B—B—

—B—B—B—

B—

B_

B._

A—A—A—A—A—A—

A

A

B

—.-B—

B

'".fﬁi_"'

A—B—A—B—

A—B—A—A—

A—A—A—A—

—A—A—A—A—A—A—A—A—A—A—

—B—B—B

WIKIPEDIA

The Free Encyclopedia

B—B—B—

Copolymer equation

An actually infinite number

of species and ODEs

(polymer of length 1)
(polymer of length 2)
(polymer of length 3)

[edit]

An alternating copolymer has the formula: -A-B-A-B-A-B-A-B-A-B-, or -(-A-B-),-. The molar ratios of
the monomer in the polymer is close to one, which happens when the reactivity ratios rq & rz are
close to zero, as given by the Mayo-Lewis equation also called the copolymerization equation:'"

d [M;]

[M;] (ry [M;] + [M3])

d [Ms)]

where ry = Kq1/kKq2 & r2 = Kaolkaq

[111’2] ([i"-l(l] + T'9 [.&fg])

=

|

-

n—calculus for Biochemistry

L

e Biochemistry here means

o Direct modeling of complexation and polymerization, which are
fundamental biochemical features.

o That is, a complex is not a “new species”: it is a structure formed
by existing basic species, which can also break apart.

« We now need the fu// n—calculus

o We need to create new channels to represent
new complexation bonds.

o We need value-passing so the components of a complex can
operate on those bonds: we need to pass channels over
channels.

Complexation
A+ B sof AB \

There is no good notation for this reaction in chemistry: AB is considered
as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in r—calculus. Let there be a
single public association channel a, at rate r, and many private
dissociations channels d. at rate s, one for each complexation event
(these are dynamically created by the new-channel operator v):

Afree = (v ds) !ar(ds); Abound(ds)
Abound(ds) = !ds; Afree

Bfree — ?ar(ds); Bbound(ds)
Bbound(ds) — ?ds; Bfree

Note that we are describing A independently of B: as in
the catalysis example, A could form complexes with
many different species over the a, channel.

1

Polymerization

Mfree bound _

I Mpound,free
I Moound,pound I

Mfree,free — ?a(b); IVlbound,free(b) D (V b) !a(b); Mfree,bound(b)
Mbound,free(l) ”; Mfree,free D (V b) !a(b); IVlbound,bound(lib)
Mfree,bound(r) . !I’; Mfree,free D ?a(b); IVlbound,bound(b!r)
Mbound,bound(lir) o ”; Mfree,bound(r) D !I’; Mbound,free(l)

Mfree,free | Mfree,free — (V b) Mbound,free(b) | Mfree,bound(b)

Polymerization

L

« Polymerization is iterated complexation

o It can be represente in n—calculus finitely,
with one process (definition) for each monomer state.

o Note that polymerization cannot be described finitely
in chemistry (or ODEs) because there it needs one
reaction for each /ength of polymer.

o The reason it works in n—-calculus is because of the v
operator. It enables the finite representation of
systems of potentially unbounded complexity.

o As in real biochemistry, where the structure of each
monomer is coded in a finite piece of DNA, and yet
unbounded-length polymers happen.

Simulation

It is possible to run simulations (particularly
Gillespie-like stochastic simulation)

For reactive systems with very large or even
infinite numbers of species and reactions
(like polymerization or unbounded complex
formation) where it would be impossible to
even write them all down.

Without ever computing all the reactions or
all the possible complexes

By producing them only during the
simulation, as the need arises

Without any kind of size cut-off or
approximation.

|

-

Biochemistry vs. n-calculus

k A B C ABC & APBC
domains ABC ABPC
Me AR ABC <> ABC,
n. B~B, ABC ABC > AB.C
Sgcrx‘::ilirc‘)ns C o Cp ABPC APBC PN ApBCp
Mg ABC, by AB.C <> ABC
1 ABC A,B,C | AB,C < AB,C,
complex Species APBCP g&?;}g;ﬁs ABCP <~ ApBCp
ac T ABG o ABK,
PP ABC <« AB.C
ApByC ApoC VAN Apocp
PTTP PTPTP
ABpCp YIS ApoCp

Stoichiometric Matrix
(species x reaction),

2" x 2n(2"1)

The matrix is very sparse, so
the corresponding ODE system
is not dense. But it still has 2"
equations, one per species, plus
conservation equations
([ABC]+[A,BC]=constant, etc.).

System description is
exponential in the number

of basic components.

A A|D
2n Bo Bp
domain ¢ CP
reactions
processes
A =?2knA, A,=?phA
2nx B =?kn;B, B,=?ph:B
C =2kn,C, C,=?phC
NEA|B|C

\

System description is
linear in the number of
basic components.

(Its "run-time" behavior or
analysis potentially blows-up just
as in the previous case, but its
description does not.)

Applications

Protein Machine

Kappa is a (much) more convenient reactive system Bioinformatics
modeling framework for biochemical systems

JOURNAL ARTICLE

The Kappa platform for rule-based modeling @

It takes complexation and post-translational modification
as primitives, instead of encoding them by rn-calculus

Pierre Boutillier &, Mutaamba Maasha, Xing Li, Héctor F Medina-Abarca, Jean Krivine,
Jéréme Feret, loana Cristescu, Angus G Forbes &, Walter Fontana &=

Bioinformatics, Volume 34, Issue 13, July 2018, Pages i583-i592,

== =)

"plumbing” with channels-over-channels. In diagram
form, it looks very much like this, but with its own
peCUIlar Syntax ' “Axin binds a regi?n_inthearnjafjillo

i repeat of B-catenin, if B-catenin is
unphosphorylated at T41 and 529

Its kinetic laws are however more complex. The original
paper on Kappa [Danos, Laneve] gives a non-trivial &) @ L, At
translation from Kappa to n-calculus.

Axin(CBD[.]),ctnnbi(armi[.],T41{u}[.],829{u}[.]) —
Axin(CBD[1]),ctnnbl(armi[1],T41{u}[.],829{u}[.1)

Kappa has since been used to model compactly, simulate,
and analyze biochemical systems of huge combinatorial
complexity [Fontana et al.] including stochastic kinetics.

Its level of "rule-based" modeling approach is very close
to biochemical statements such as: ‘protein A is
phosphorylated on site 1 and then binds to protein B on
site 2"

Gene Machine

Simulation of DNA replication fork dynamics and positional
occupation over the DNA sequence, compared to nanopore data.

PLOS COMPUTATIONAL BIOLOGY

@ oPsnaccess P PEER-REVIEWED

RESEARCH ARTICLE

The Beacon Calculus: A formal method for the flexible and
concise modelling of biological systems

Michael A. Boemo [E]. Luca Cardelli, Conrad A. Nieduszynski

5 | — Simulations '
T10 — Uniform Firing

Position on Chromosome (kb)

Membrane Machine

Static Compartments

Fragment of the hypothalamic system for body weight regulation
handling molecular events (receptors, signaling pathways and gene expression) within a
heterogeneous cell population sequestered to distinct anatomical compartments.

Theoretical Computer Science
Volume 325, Issue 1, 28 September 2004, Pages 141-167

ELSEVIER

BioAmbients: an abstraction for biological
compartments

Aviv Regev ® 9 =, Ekaterina M. Panina ®, William Silverman ¢, Luca Cardelli ¢, Ehud Shapiro

Dynamic Compartments

Qualitative model of a whole process of virus infection
and reproduction, including membrane topology transitions.

International Conference on Computational Methods in Systems Biology
Ly CMSB 2004: Computational Methods in Systems Biology pp 257-278 \ Cite as
-3

Home > Computational Methods in Systems Biology > Conference paper

Brane Calculi

Interactions of Biological Membranes
Luca Cardelli

Conference paper
605 Accesses ‘ 147 Citations

Part of the Lecture Notes in Computer Science book series (LNBI,volume 3082)

y
MSH
B2e BindMCH

9 _sig oxy

w -a]b
bind_GyG
C o6 O
P -
omytocin
Coxyrocind

wxit pepOxy|

Figure 6 Viral Infection and Reproduction ([1] p.279)

Conclusions

Reactive Systems

A model of computation

o Many flavors, but sharing common principles and techniques
o Suitable for nondeterministic concurrent systems with unbounded

execution, unbounded proliferation, and dynamical connectivity

o m-calculus as a minimal notation for general reactive systems

A solution to combinatorial explosion
o Models are exponentially (for phosphorylation/ complexation) or

infinitely (for polymerization) more compact.

o The state space is explored incrementally, and even if the state space is

actually infinite (as with polymers) we can still expand it on demand and
simulate it with standard techniques.

Further Reading

(@)
(@)
(@)
(@)
(@)

R. Milner: Communicating and Mobile Systems: The Pi Calculus

A. Regeyv, E. Shapiro. Cellular Abstractions: Cells as Computation. NATURE vol 419, 2002-09-26, 343.

L. Cardelli: From Processes to ODEs by Chemistry. TCS 273, 261-281, 2008,

V. Danos, C. Laneve. Formal molecular biology. TCS 325(1), 69-110, 2004.

Pierre Boutillier et al. The Kappa platform for rule-based modeling. Bioinformatics. 34(13): i583-i592, 2018.

