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Outline
• Reactive Systems

o Processes vs. Functions

• Processes and Chemistry
o Chemical modeling
o Biochemical modeling (complexation etc.)

• Modeling Combinatorial Systems
o General strong points of “agent-based” 

or “reactive” modeling languages
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binding

modification

possible bindings

fewer bindings

different bindings

Dynamic Interactions

Mathematical modeling: What function does a protein compute?
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Macromolecules and their Machines

Gene
Machine

Protein
Machine

Regulation

Metabolism, Propulsion
Signal Processing
Molecular Transport

Confinement
Storage
Bulk Transport

Implements fusion, fission

Holds receptors, actuators 
hosts reactions

Nucleotides

Aminoacids

Machine
Interactions P Q

Machine
Phospholipids

Membrane 

[   ]Glycan
Machine

Sugars

Surface and 
Extracellular 
Features

Biochemical 
Networks

Transport 
Networks

Gene Regulatory 
Networks

What function does 
a cell compute?
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Reactive Systems
o Developed in Computer Science to get away from the strict 

notion of input/output computation
o Even more fundamentally, to get away from the very notion of 

functions as mathematical modeling tools

o We realized in the 60's-80s' that we could not practically
model/implement operating systems and computer networks as 
imperative programs, because of combinatorial state explosion 
(which is also pervasive in biology)

o And we struggled theoretically to model them via appropriate 
mathematical functions, because of concurrency and 
nondeterminism (which are also pervasive in biology)

o What function does the internet (or a protein / gene / membrane 
/ cell) compute?

o This led to a fundamental change in point of view of how to 
model systems in general
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How does X compute
• Change the question from What to How

o How does an Operating System compute?
o How does the Internet compute?
o How does a Cell compute?

• I.e.: what steps does X perform?
o We can talk about what steps a subsystem performs 

in reaction to a stimulus from the environment
o And what are the local consequences of those steps
o (And this turns out to include functions as a special 

case)
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What is reactive computation?
• Functions

o Functions are supposed to terminate and give a final answer
o But if e.g. the internet terminates, it's useless: whatever answers 

it gives, they are never final. And if a cell terminates, it's dead.

• Reactive Systems (by many names: agent-based, etc.)
o Systems that accept inputs and provide outputs, but not 

necessarily in a "functional" way, e.g. because they have multiple 
interaction points, they have internal state, or have "a mind of 
their own“ that does not even depend on the inputs.

o They react to the environment. 
The environment reacts to them.

o In this view computation is reaction, or more symmetrically is 
interaction, or is communication when something is exchanged 
during interaction.



Functions vs. Processes1

We analyze the notion of "computation step" for functions,
and we generalize it to processes

(1) A "Process"  is a component of a reactive system



Function Diagrams
o We use diagrams to emphasized simple computation steps

o (A function of two inputs would be a function of a single input that is a pair)

o Function composition (g o f) 
N.B. we rename out to temp in f, and in to temp in g, 
so they connect through their now common channel temp

in outf
x y

in tempf
x y

outg
z

g o f
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Process Diagrams
• Multiple input and multiple output channels

• In “pure interaction” there is actually no difference between 
input and output channels: they just interact symmetrically with 
the environment

• But in “communication” there is a direction in which 
messages a received or sent. We may or may not label receive-
channels as “in” and send-channels as “out”

• Specific “channel names” become fundamental to describe how 
processes interconnect (unlike functions, which have 1 default 
input and 1 default output channel name)

out1P
in2

in1

out2

This is not a function of 2 
inputs. Don't think And-gate (a 
Boolean function with 2 in 1 out)

Think Flip-Flop (a "thing" with 2 
independent set/reset inputs 
and 2 separate outputs)
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Process Diagrams
• Process composition (Q | R)

A specific wiring is obtained
by (re)naming of the connections
ahead of time

Rules:     P | 0 = P
P | Q = Q | P
P | (Q | R) = (P | Q) | R          0 is the null process that has no channels

(P | P ≠ P  in general)

P Q

R

Q | R

in1

in2

in3

out1

out2

⊘a

b

c



in out
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Functions as Processes
f(x) = √x

√
x √x

f = ?in(x); !out(√x)

channels

function

input output

read write

“read from in into x; then write √x to out”

applyinput
output

Reactive
Syntax

Reactive
Diagram
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Composing Functions
g(x) = (f ∘ f)(x)    ( = f(f(x)) )

in out
temp

√
x √x

in
temp

out√
x √x

input temp√
x √x

output√
√√x

y √y
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Composing Functions

in temp√
x √x

out√
√√x

g(x) = (f ∘ f)(x)

g = (n temp)
?in(x); !temp(√x) |
?temp(y); !out(√y) 

channel creation
composition

“create a new channel and use it to compose two copies of f”

Reactive
Diagram

Reactive
Syntax

private channel
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A Process that is not a Function

in3

out1Pin2

in1

out2

?in1

?in2

!out1

?in3

⊕

!out2 !out1
0

P

The ‘skeleton’ 
automaton

P = ?in1(x); ?in2(y); !out1(x+y); P
⊕ ?in3(z); !out2(√z); !out1(2z); 0 

choice

recursion

Reactive
Diagram

Reactive
Skeleton

Reactive
Syntax
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Ex. Vending Machine
A candy for 2 coins

VM =
?coin(c1);

(   ?coin(c2); !deliver(candy); VM
⊕ ?abort(); !refund(c1); VM
⊕ ?shake(); 0)

⊕ ?shake(); 0

Note that we are not describing the environment.

deliverVM
abort

coin

refund
shake

!deliver

?shake
⊕

0

VM
⊕

?coin

?abort
?coin

!refund
0?shake
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Dynamic Networks
• Here is where (static) diagrams fail, 

and syntax has to take over

o Proliferation/degradation

o Interface modification

o Biological (and software) networks do both 
things a lot, as opposed to e.g. electrical networks

P =  ?in(); (P | P)
P =  ?in(); 0

P = ?in(x); !x(); Q
channel passing!
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That’s p-calculus
• To compose processes P we need:

o Composition: P | P (with identity elem. 0)
o Channel cration: (n x) P (with x bound in P)
o Recursion: *P (equal to P | *P)

• To perform computation steps we need:
o Channel reading: ?c(x); P (with x bound in P)
o Channel writing: !c(M); P (with message M)
o Choice: P ⊕ P (with identity elem. 0)

• … and channels can be sent as messages!
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Generalizing Functions and Automata
• Unlike functions…

o Processes have multiple, explicitly named, input and 
output channels.

o Processes can run in parallel, can deadlock on their inputs, 
and can be nondeterministic in their outputs.

• Unlike automata (FSA)…
o Processes can transmit data (not just change state).
o While automata ‘talk’ to input strings, processes ‘talk’ to 

other processes: processes are communicating automata.
o Processes are not “finite state”; they can express 

unbounded computation in time (divergence) and space 
(proliferation).

o They have dynamic connectivity: networks can reshape 
themselves.



The Kinetics 
of Computation

1

1) how things move, in this case what steps they take and possibly at what rate.
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Function Kinetics
• Functions have a single kinetic law:

o Application rule:
If      f(x) =def M{x}       then       f(a)  M{a/x}

e.g.; f(x) =def not(x) then       
f(true)  not(x){true/x} = not(true) ....  false

• No other kinetic rule is strictly required
o E.g., no arithmetic: “variable shuffling” is enough to compute 

anything [Church/Turing]

• The application rule is how functions compute

computes uniquely to
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Process Kinetics
• Processes have one kinetic law:

o Communication rule
(?c(x);P{x}) ⊕ P’  | (!c(a);Q) ⊕ Q’       P{a/x} | Q

• plus one important identity:
o Extrusion rule

((n x)P) | Q = (n x)(P|Q)      for x not occurring in Q

• No other kinetic rule is strictly required
o “channel shuffling” is enough to compute anything [Milner]

• The communication rule is how reactive systems 
compute

may compute to

is the same as (not a computation step)
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Ex. VM in environment
VM =  ?coin(c1);                                             BUYER =

(   ?coin(c2); !deliver(candy); VM !coin(10p); 
⊕ ?abort(); !refund(c1); VM !coin(10p); 
⊕ ?shake(); 0) ?deliver(yum); 

⊕ ?shake(); 0 EAT

VM     | BUYER

 ?coin(c2); !deliver(candy); VM |      !coin(10p); ?deliver(yum); EAT
⊕ ?abort(); !refund(10p); VM
⊕ ?shake(); 0

 !deliver(candy); VM |       ?deliver(yum); EAT

 VM |       EAT

There can be a rate associated with each channel, determining the speed of interactions.

?coin(c1);
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Equivalence
• The "what does X compute?" question can be replaced by 

equivalence: two systems compute the same thing (whatever that is) 
if they can replace each other in every possible situation, according 
to the kinetic laws.

• Two functions are equivalent if they can replace each other in every 
context made up by other functions (Extensionality)
o If they produce the same outputs from the same inputs.
o The Church-Rosser theorem states that the kinetic law for functions 

leads to deterministic answers: this is non-trivial.

• Two processes are equivalent if they can replace each other in every 
environment made up by other processes (Contextual congruence)
o A proof technique for process equivalence is based on showing 

bisimilarity: for each step one process can make, the other can choose 
to make a similar step ending up again in equivalent processes.

o One of the main theorems states that bisimilarity is a congruence, i.e., 
that if two systems are bisimilar, then they can be exchanged for one 
another in every environment with no observable difference.



Chemical Networks
as Reactive Systems



d[Ai]/dt = -r[A1][A2] Mass Action Law
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Chemical Systems

A1 + A2 r B1 + B2

(assuming Bi≠Aj for all i,j) 

Deterministic reaction kinetics

Reactions:

Stochastic reaction kinetics

Chemical Master Equation -> CTMC
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As Reactive Systems

c: A1 + A2 r B1 + B2

Uniquely-named asymmetric (A1 ≠ A2) reaction c:

A1 = ?cr; B1 (the name of the reaction becomes the channel)

A2 = !cr; B2

Processes:

2A1|2A2 A1|A2|B1|B2

r

The (quantitative) kinetic laws for processes lead to a CTMC semantics.
E.g., with initial conditions 2A1|2A2, the CTMC is:

r

2B1|2B2

A reaction is ambiguous about how
the lhs species transfer to the rhs

A1 = ?cr; B2
A2 = !cr; B1

A1 = ?cr; (B1|B2)
A2 = !cr; 0

or: or:

channel with rate

The reactive system must 
resolve the ambiguity
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As Reactive Systems

c: A + A r B1 + … + Bn

Uniquely-named symmetric reaction c:

A = ?cr/2; (B1|…|Bi) ⊕ !cr/2; (Bi+1|…|Bn) 0≤i≤n

Discrete reaction kinetics (A must interact with a copy of itself):

A|A B1|…|Bn

r/2

With initial conditions A|A (two molecules), the CTMC is as follows; 
note that each copy of A can do an input or an output, so there are 
two possible paths to the outcome:

A|A B1|…|Bn

r
That is:

r/2
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From Reactions to Processes

2023-09-22 29

v1: A+B k1 C+C
v2: A+C k2 D
v3: C k3 E+F
v4: F+F k4 B

v4(k4/2)v3(k3)v2(k2)v1(k1)

?;D?;(C|C)A
!;0B

t;(E|F)!;0C
D
E

?;B
!;0

F

channels 
(1 per reaction)

pr
oc

es
se

s
(1

 p
er

 s
pe

ci
es

)

Interaction
Matrix

Fill the matrix by columns:

Degradation reaction vi: X ki Pi
add t;Pi to <X,vi>. 

Asymmetric reaction vi: X+Y ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Symmetric reaction vi: X+X ki Pi
add ?;Pi and !;0 to <X,vi>

Half-rate for 
symmetric 
reactions

Read out the processes by rows:

A = ?v1(k1);(C|C)   ?v2(k2);D 
B = !v1(k1);0
C = !v2(k2);0   tk3;(E|F)
D =0 
E = 0 
F = ?v4(k4/2);B   !v4(k4/2);0 

A

B C

D

EF

C
k1

k2

k4
k3
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Different Processes for the same Reactions
• That was a systematic way to translate reactions to 

processes, akin to the way the stoichiometric matrix 
leads systematically to generating mass action ODEs.

• There can be multiple reaction systems that produce the 
same ODEs: reactions are finer than ODEs.

• Here there can be multiple process systems that produce 
the same reactions: processes are finer than reactions.

• Hence there can be better or worse ways to get 
processes that match certain reactions.

• That is, different processes that produce more compact 
and/or modular models, but with the same kinetics.
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Ex: Catalysis
• Two reactions, same catalyst C

o According to the general scheme the catalyst uses one channel 
for each reaction it catalyzes

o Modularizing: the catalyst has its own catalysis channel c, used 
for all the reactions it catalyzes:

o A very minor improvement in model size here, but these 
improvement compound in larger models

a:   A + C r C + B
b:   D + C r C + E

C = !ar; C ⊕ !br; C
A = ?ar; B
D = ?br; E

A + C r C + B
D + C r C + E

C = !cr; C 
A = ?cr; B
D = ?cr; E
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r: A + B k1 C + D
s: C + D k2 A + B

A  =  !rk1; C
C  =  ?sk2; A
B  =  ?rk1; D
D  =  !sk2; B

Chemistry vs. p-calculus

A

C

B

Drk1

Chemical reactions Reactive system (p)

A Petri-Net-like representation. Precise and dynamic, 
but not modular, scalable, or maintainable.

A compositional graphical representation (precise, 
dynamic and modular) and the corresponding calculus.

Reaction
oriented

Interaction
oriented

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

1 line per 
reaction

1 line per 
component

Does A 
become 
C or D?

A 
becomes 
C not D!

A

C

B

D
sk2

!rk1 ?rk1?sk2 !sk2



Biochemical Networks
as Reactive Systems
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Molecules with State
• Explosion of species, reactions, and state space.

n modification sites
= 2n molecular states
= 2n ‘species’
= 2n ODEs (mass action)

the master equation 
will have 2n ODEs for 
each molecule!
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Connected Molecules
• Further combinatorial explosion

n states -- m states = nxm states 2n1 x 2n2 x ... x 2nm = BIG
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Iterated Connections (Polymers)
• ‘Infinite’ explosion

An actually infinite number 
of species and ODEs

p1 (polymer of length 1)
p2 (polymer of length 2)
p3 (polymer of length 3)
...
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p-calculus for Biochemistry
• Biochemistry here means

o Direct modeling of complexation and polymerization, which are 
fundamental biochemical features.

o That is, a complex is not a “new species”: it is a structure formed 
by existing basic species, which can also break apart.

• We now need the full p-calculus
o We need to create new channels to represent 

new complexation bonds.
o We need value-passing so the components of a complex can 

operate on those bonds: we need to pass channels over 
channels.
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Complexation
A + B   sr AB 

There is no good notation for this reaction in chemistry: AB is considered 
as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in p-calculus. Let there be a 
single public association channel ar at rate r, and many private 
dissociations channels ds at rate s, one for each complexation event 
(these are dynamically created by the new-channel operator n):
Afree = (n ds) !ar(ds); Abound(ds)
Abound(ds) = !ds; Afree

Bfree = ?ar(ds); Bbound(ds)
Bbound(ds) = ?ds; Bfree

More compactly:

A = (n ds) !ar(ds); !ds; A
B = ?ar(ds); ?ds; B 

Note that we are describing A independently of B: as in 
the catalysis example, A could form complexes with 
many different species over the ar channel.
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Polymerization

Mfree,free = ?a(b); Mbound,free(b) ⊕ (n b) !a(b); Mfree,bound(b)
Mbound,free(l) = !l; Mfree,free ⊕ (n b) !a(b); Mbound,bound(l,b)
Mfree,bound(r) = !r; Mfree,free ⊕ ?a(b); Mbound,bound(b,r)
Mbound,bound(l,r) = !l; Mfree,bound(r) ⊕ !r; Mbound,free(l)

Mfree,free

Mfree,bound

Mbound,free

Mbound,bound

Mfree,free | Mfree,free  (n b) Mbound,free(b) | Mfree,bound(b) 
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Polymerization
• Polymerization is iterated complexation

o It can be represente in p-calculus finitely, 
with one process (definition) for each monomer state.

o Note that polymerization cannot be described finitely
in chemistry (or ODEs) because there it needs one 
reaction for each length of polymer.

o The reason it works in p-calculus is because of the n
operator. It enables the finite representation of 
systems of potentially unbounded complexity. 

o As in real biochemistry, where the structure of each 
monomer is coded in a finite piece of DNA, and yet 
unbounded-length polymers happen.
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Simulation
• It is possible to run simulations (particularly 

Gillespie-like stochastic simulation)
• For reactive systems with very large or even 

infinite numbers of species and reactions 
(like polymerization or unbounded complex 
formation) where it would be impossible to 
even write them all down.

• Without ever computing all the reactions or 
all the possible complexes

• By producing them only during the 
simulation, as the need arises

• Without any kind of size cut-off or 
approximation.
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Biochemistry vs. p-calculus

A  Ap

B  Bp

C  Cp

ABC  ApBC
ABC  ABpC
ABC  ABCp

ApBC  ApBpC
ApBC  ApBCp

ABpC  ApBpC
ABpC  ABpCp

ABCp  ApBCp

ABCp  ABpCp

ApBpC  ApBpCp

ApBCp  ApBpCp

ABpCp  ApBpCp

ABC
ApBC
ABpC
ABCp
ApBpC
ApBCp

ABpCp
ApBpCp

2n x 2n(2n-1)

2n
ABC1

2n
domain
reactions

complex
species reactions

(twice number of 
edges in n-dim 
hypercube)

2n(2n-1)

A, B, Cn
domains

Stoichiometric Matrix 
(species x reaction),

The matrix is very sparse, so 
the corresponding ODE system 
is not dense. But it still has 2n

equations, one per species, plus 
conservation equations 
([ABC]+[ApBC]=constant, etc.).

System description is 
exponential in the number 
of basic components.

A  Ap

B  Bp

C  Cpdomain
reactions

A  = ?kn;Ap Ap = ?ph;A
B  = ?kn;Bp Bp = ?ph;B
C  = ?kn;Cp Cp = ?ph;C

A | B | Cn

processes

(Its “run-time” behavior or 
analysis potentially blows-up just 
as in the previous case, but its 
description does not.)

System description is 
linear in the number of 
basic components.

2n

2n



Applications
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Protein Machine
• Kappa is a (much) more convenient reactive system 

modeling framework for biochemical systems

• It takes complexation and post-translational modification 
as primitives, instead of encoding them by p-calculus 
"plumbing” with channels-over-channels. In diagram 
form, it looks very much like this, but with its own 
peculiar syntax:

• Its kinetic laws are however more complex. The original 
paper on Kappa [Danos, Laneve] gives a non-trivial 
translation from Kappa to p-calculus.

• Kappa has since been used to model compactly, simulate, 
and analyze biochemical systems of huge combinatorial 
complexity [Fontana et al.] including stochastic kinetics.

• Its level of "rule-based" modeling approach is very close 
to biochemical statements such as: "protein A is 
phosphorylated on site 1 and then binds to protein B on 
site 2"
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Gene Machine
Simulation of DNA replication fork dynamics and positional 
occupation over the DNA sequence, compared to nanopore data.
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Membrane Machine
Static Compartments
Fragment of the hypothalamic system for body weight regulation 
handling molecular events (receptors, signaling pathways and gene expression) within a 
heterogeneous cell population sequestered to distinct anatomical compartments.

Dynamic Compartments
Qualitative model of a whole process of virus infection 
and reproduction, including membrane topology transitions.



Conclusions
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Reactive Systems
• A model of computation

o Many flavors, but sharing common principles and techniques
o Suitable for nondeterministic concurrent systems with unbounded 

execution, unbounded proliferation, and dynamical connectivity
o p-calculus as a minimal notation for general reactive systems

• A solution to combinatorial explosion
o Models are exponentially (for phosphorylation/ complexation) or 

infinitely (for polymerization) more compact.
o The state space is explored incrementally, and even if the state space is 

actually infinite (as with polymers) we can still expand it on demand and 
simulate it with standard techniques.

• Further Reading
o R. Milner: Communicating and Mobile Systems: The Pi Calculus
o A. Regev, E. Shapiro. Cellular Abstractions: Cells as Computation. NATURE vol 419, 2002-09-26, 343. 
o L. Cardelli: From Processes to ODEs by Chemistry. TCS 273, 261-281, 2008, 
o V. Danos, C. Laneve. Formal molecular biology. TCS 325(1), 69-110, 2004.
o Pierre Boutillier et al. The Kappa platform for rule-based modeling. Bioinformatics. 34(13): i583–i592, 2018.


