
Reactive Systems

Luca Cardelli
University of Oxford

Applied Systems Biology Course 2023-09-19
https://sites.google.com/view/applied-system-biology-course/

http://lucacardelli.name

2023-09-22Luca Cardelli 2

Outline
• Reactive Systems

o Processes vs. Functions

• Processes and Chemistry
o Chemical modeling
o Biochemical modeling (complexation etc.)

• Modeling Combinatorial Systems
o General strong points of “agent-based”

or “reactive” modeling languages

2023-09-22 3

binding

modification

possible bindings

fewer bindings

different bindings

Dynamic Interactions

Mathematical modeling: What function does a protein compute?

2023-09-22 4

Macromolecules and their Machines

Gene
Machine

Protein
Machine

Regulation

Metabolism, Propulsion
Signal Processing
Molecular Transport

Confinement
Storage
Bulk Transport

Implements fusion, fission

Holds receptors, actuators
hosts reactions

Nucleotides

Aminoacids

Machine
Interactions P Q

Machine
Phospholipids

Membrane

[]Glycan
Machine

Sugars

Surface and
Extracellular
Features

Biochemical
Networks

Transport
Networks

Gene Regulatory
Networks

What function does
a cell compute?

2023-09-22Luca Cardelli 5

Reactive Systems
o Developed in Computer Science to get away from the strict

notion of input/output computation
o Even more fundamentally, to get away from the very notion of

functions as mathematical modeling tools

o We realized in the 60's-80s' that we could not practically
model/implement operating systems and computer networks as
imperative programs, because of combinatorial state explosion
(which is also pervasive in biology)

o And we struggled theoretically to model them via appropriate
mathematical functions, because of concurrency and
nondeterminism (which are also pervasive in biology)

o What function does the internet (or a protein / gene / membrane
/ cell) compute?

o This led to a fundamental change in point of view of how to
model systems in general

2023-09-22Luca Cardelli 6

How does X compute
• Change the question from What to How

o How does an Operating System compute?
o How does the Internet compute?
o How does a Cell compute?

• I.e.: what steps does X perform?
o We can talk about what steps a subsystem performs

in reaction to a stimulus from the environment
o And what are the local consequences of those steps
o (And this turns out to include functions as a special

case)

2023-09-22Luca Cardelli 7

What is reactive computation?
• Functions

o Functions are supposed to terminate and give a final answer
o But if e.g. the internet terminates, it's useless: whatever answers

it gives, they are never final. And if a cell terminates, it's dead.

• Reactive Systems (by many names: agent-based, etc.)
o Systems that accept inputs and provide outputs, but not

necessarily in a "functional" way, e.g. because they have multiple
interaction points, they have internal state, or have "a mind of
their own“ that does not even depend on the inputs.

o They react to the environment.
The environment reacts to them.

o In this view computation is reaction, or more symmetrically is
interaction, or is communication when something is exchanged
during interaction.

Functions vs. Processes1

We analyze the notion of "computation step" for functions,
and we generalize it to processes

(1) A "Process" is a component of a reactive system

Function Diagrams
o We use diagrams to emphasized simple computation steps

o (A function of two inputs would be a function of a single input that is a pair)

o Function composition (g o f)
N.B. we rename out to temp in f, and in to temp in g,
so they connect through their now common channel temp

in outf
x y

in tempf
x y

outg
z

g o f

2023-09-22Luca Cardelli 10

Process Diagrams
• Multiple input and multiple output channels

• In “pure interaction” there is actually no difference between
input and output channels: they just interact symmetrically with
the environment

• But in “communication” there is a direction in which
messages a received or sent. We may or may not label receive-
channels as “in” and send-channels as “out”

• Specific “channel names” become fundamental to describe how
processes interconnect (unlike functions, which have 1 default
input and 1 default output channel name)

out1P
in2

in1

out2

This is not a function of 2
inputs. Don't think And-gate (a
Boolean function with 2 in 1 out)

Think Flip-Flop (a "thing" with 2
independent set/reset inputs
and 2 separate outputs)

2023-09-22Luca Cardelli 11

Process Diagrams
• Process composition (Q | R)

A specific wiring is obtained
by (re)naming of the connections
ahead of time

Rules: P | 0 = P
P | Q = Q | P
P | (Q | R) = (P | Q) | R 0 is the null process that has no channels

(P | P ≠ P in general)

P Q

R

Q | R

in1

in2

in3

out1

out2

⊘a

b

c

in out

2023-09-22Luca Cardelli 12

Functions as Processes
f(x) = √x

√
x √x

f = ?in(x); !out(√x)

channels

function

input output

read write

“read from in into x; then write √x to out”

applyinput
output

Reactive
Syntax

Reactive
Diagram

2023-09-22Luca Cardelli 13

Composing Functions
g(x) = (f ∘ f)(x) (= f(f(x)))

in out
temp

√
x √x

in
temp

out√
x √x

input temp√
x √x

output√
√√x

y √y

2023-09-22Luca Cardelli 14

Composing Functions

in temp√
x √x

out√
√√x

g(x) = (f ∘ f)(x)

g = (n temp)
?in(x); !temp(√x) |
?temp(y); !out(√y)

channel creation
composition

“create a new channel and use it to compose two copies of f”

Reactive
Diagram

Reactive
Syntax

private channel

2023-09-22Luca Cardelli 15

A Process that is not a Function

in3

out1Pin2

in1

out2

?in1

?in2

!out1

?in3

⊕

!out2 !out1
0

P

The ‘skeleton’
automaton

P = ?in1(x); ?in2(y); !out1(x+y); P
⊕ ?in3(z); !out2(√z); !out1(2z); 0

choice

recursion

Reactive
Diagram

Reactive
Skeleton

Reactive
Syntax

2023-09-22Luca Cardelli 16

Ex. Vending Machine
A candy for 2 coins

VM =
?coin(c1);

(?coin(c2); !deliver(candy); VM
⊕ ?abort(); !refund(c1); VM
⊕ ?shake(); 0)

⊕ ?shake(); 0

Note that we are not describing the environment.

deliverVM
abort

coin

refund
shake

!deliver

?shake
⊕

0

VM
⊕

?coin

?abort
?coin

!refund
0?shake

2023-09-22Luca Cardelli 17

Dynamic Networks
• Here is where (static) diagrams fail,

and syntax has to take over

o Proliferation/degradation

o Interface modification

o Biological (and software) networks do both
things a lot, as opposed to e.g. electrical networks

P = ?in(); (P | P)
P = ?in(); 0

P = ?in(x); !x(); Q
channel passing!

2023-09-22Luca Cardelli 18

That’s p-calculus
• To compose processes P we need:

o Composition: P | P (with identity elem. 0)
o Channel cration: (n x) P (with x bound in P)
o Recursion: *P (equal to P | *P)

• To perform computation steps we need:
o Channel reading: ?c(x); P (with x bound in P)
o Channel writing: !c(M); P (with message M)
o Choice: P ⊕ P (with identity elem. 0)

• … and channels can be sent as messages!

2023-09-22Luca Cardelli 19

Generalizing Functions and Automata
• Unlike functions…

o Processes have multiple, explicitly named, input and
output channels.

o Processes can run in parallel, can deadlock on their inputs,
and can be nondeterministic in their outputs.

• Unlike automata (FSA)…
o Processes can transmit data (not just change state).
o While automata ‘talk’ to input strings, processes ‘talk’ to

other processes: processes are communicating automata.
o Processes are not “finite state”; they can express

unbounded computation in time (divergence) and space
(proliferation).

o They have dynamic connectivity: networks can reshape
themselves.

The Kinetics
of Computation

1

1) how things move, in this case what steps they take and possibly at what rate.

2023-09-22Luca Cardelli 21

Function Kinetics
• Functions have a single kinetic law:

o Application rule:
If f(x) =def M{x} then f(a)  M{a/x}

e.g.; f(x) =def not(x) then
f(true)  not(x){true/x} = not(true)  false

• No other kinetic rule is strictly required
o E.g., no arithmetic: “variable shuffling” is enough to compute

anything [Church/Turing]

• The application rule is how functions compute

computes uniquely to

2023-09-22Luca Cardelli 22

Process Kinetics
• Processes have one kinetic law:

o Communication rule
(?c(x);P{x}) ⊕ P’ | (!c(a);Q) ⊕ Q’  P{a/x} | Q

• plus one important identity:
o Extrusion rule

((n x)P) | Q = (n x)(P|Q) for x not occurring in Q

• No other kinetic rule is strictly required
o “channel shuffling” is enough to compute anything [Milner]

• The communication rule is how reactive systems
compute

may compute to

is the same as (not a computation step)

2023-09-22Luca Cardelli 23

Ex. VM in environment
VM = ?coin(c1); BUYER =

(?coin(c2); !deliver(candy); VM !coin(10p);
⊕ ?abort(); !refund(c1); VM !coin(10p);
⊕ ?shake(); 0) ?deliver(yum);

⊕ ?shake(); 0 EAT

VM | BUYER

 ?coin(c2); !deliver(candy); VM | !coin(10p); ?deliver(yum); EAT
⊕ ?abort(); !refund(10p); VM
⊕ ?shake(); 0

 !deliver(candy); VM | ?deliver(yum); EAT

 VM | EAT

There can be a rate associated with each channel, determining the speed of interactions.

?coin(c1);

2023-09-22Luca Cardelli 24

Equivalence
• The "what does X compute?" question can be replaced by

equivalence: two systems compute the same thing (whatever that is)
if they can replace each other in every possible situation, according
to the kinetic laws.

• Two functions are equivalent if they can replace each other in every
context made up by other functions (Extensionality)
o If they produce the same outputs from the same inputs.
o The Church-Rosser theorem states that the kinetic law for functions

leads to deterministic answers: this is non-trivial.

• Two processes are equivalent if they can replace each other in every
environment made up by other processes (Contextual congruence)
o A proof technique for process equivalence is based on showing

bisimilarity: for each step one process can make, the other can choose
to make a similar step ending up again in equivalent processes.

o One of the main theorems states that bisimilarity is a congruence, i.e.,
that if two systems are bisimilar, then they can be exchanged for one
another in every environment with no observable difference.

Chemical Networks
as Reactive Systems

d[Ai]/dt = -r[A1][A2] Mass Action Law

2023-09-22Luca Cardelli 26

Chemical Systems

A1 + A2 r B1 + B2

(assuming Bi≠Aj for all i,j)

Deterministic reaction kinetics

Reactions:

Stochastic reaction kinetics

Chemical Master Equation -> CTMC

2023-09-22Luca Cardelli 27

As Reactive Systems

c: A1 + A2 r B1 + B2

Uniquely-named asymmetric (A1 ≠ A2) reaction c:

A1 = ?cr; B1 (the name of the reaction becomes the channel)

A2 = !cr; B2

Processes:

2A1|2A2 A1|A2|B1|B2

r

The (quantitative) kinetic laws for processes lead to a CTMC semantics.
E.g., with initial conditions 2A1|2A2, the CTMC is:

r

2B1|2B2

A reaction is ambiguous about how
the lhs species transfer to the rhs

A1 = ?cr; B2
A2 = !cr; B1

A1 = ?cr; (B1|B2)
A2 = !cr; 0

or: or:

channel with rate

The reactive system must
resolve the ambiguity

2023-09-22Luca Cardelli 28

As Reactive Systems

c: A + A r B1 + … + Bn

Uniquely-named symmetric reaction c:

A = ?cr/2; (B1|…|Bi) ⊕ !cr/2; (Bi+1|…|Bn) 0≤i≤n

Discrete reaction kinetics (A must interact with a copy of itself):

A|A B1|…|Bn

r/2

With initial conditions A|A (two molecules), the CTMC is as follows;
note that each copy of A can do an input or an output, so there are
two possible paths to the outcome:

A|A B1|…|Bn

r
That is:

r/2

2023-09-22Luca Cardelli 29

From Reactions to Processes

2023-09-22 29

v1: A+B k1 C+C
v2: A+C k2 D
v3: C k3 E+F
v4: F+F k4 B

v4(k4/2)v3(k3)v2(k2)v1(k1)

?;D?;(C|C)A
!;0B

t;(E|F)!;0C
D
E

?;B
!;0

F

channels
(1 per reaction)

pr
oc

es
se

s
(1

 p
er

 s
pe

ci
es

)

Interaction
Matrix

Fill the matrix by columns:

Degradation reaction vi: X ki Pi
add t;Pi to <X,vi>.

Asymmetric reaction vi: X+Y ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Symmetric reaction vi: X+X ki Pi
add ?;Pi and !;0 to <X,vi>

Half-rate for
symmetric
reactions

Read out the processes by rows:

A = ?v1(k1);(C|C)  ?v2(k2);D
B = !v1(k1);0
C = !v2(k2);0  tk3;(E|F)
D =0
E = 0
F = ?v4(k4/2);B  !v4(k4/2);0

A

B C

D

EF

C
k1

k2

k4
k3

2023-09-22Luca Cardelli 30

Different Processes for the same Reactions
• That was a systematic way to translate reactions to

processes, akin to the way the stoichiometric matrix
leads systematically to generating mass action ODEs.

• There can be multiple reaction systems that produce the
same ODEs: reactions are finer than ODEs.

• Here there can be multiple process systems that produce
the same reactions: processes are finer than reactions.

• Hence there can be better or worse ways to get
processes that match certain reactions.

• That is, different processes that produce more compact
and/or modular models, but with the same kinetics.

2023-09-22Luca Cardelli 31

Ex: Catalysis
• Two reactions, same catalyst C

o According to the general scheme the catalyst uses one channel
for each reaction it catalyzes

o Modularizing: the catalyst has its own catalysis channel c, used
for all the reactions it catalyzes:

o A very minor improvement in model size here, but these
improvement compound in larger models

a: A + C r C + B
b: D + C r C + E

C = !ar; C ⊕ !br; C
A = ?ar; B
D = ?br; E

A + C r C + B
D + C r C + E

C = !cr; C
A = ?cr; B
D = ?cr; E

2023-09-22 32

r: A + B k1 C + D
s: C + D k2 A + B

A = !rk1; C
C = ?sk2; A
B = ?rk1; D
D = !sk2; B

Chemistry vs. p-calculus

A

C

B

Drk1

Chemical reactions Reactive system (p)

A Petri-Net-like representation. Precise and dynamic,
but not modular, scalable, or maintainable.

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.

Reaction
oriented

Interaction
oriented

Maps to
a CTMC

Maps to
a CTMC

The same “model”

Interaction
oriented

1 line per
reaction

1 line per
component

Does A
become
C or D?

A
becomes
C not D!

A

C

B

D
sk2

!rk1 ?rk1?sk2 !sk2

Biochemical Networks
as Reactive Systems

2023-09-22Luca Cardelli 34

Molecules with State
• Explosion of species, reactions, and state space.

n modification sites
= 2n molecular states
= 2n ‘species’
= 2n ODEs (mass action)

the master equation
will have 2n ODEs for
each molecule!

2023-09-22Luca Cardelli 35

Connected Molecules
• Further combinatorial explosion

n states -- m states = nxm states 2n1 x 2n2 x ... x 2nm = BIG

2023-09-22Luca Cardelli 36

Iterated Connections (Polymers)
• ‘Infinite’ explosion

An actually infinite number
of species and ODEs

p1 (polymer of length 1)
p2 (polymer of length 2)
p3 (polymer of length 3)
...

2023-09-22Luca Cardelli 37

p-calculus for Biochemistry
• Biochemistry here means

o Direct modeling of complexation and polymerization, which are
fundamental biochemical features.

o That is, a complex is not a “new species”: it is a structure formed
by existing basic species, which can also break apart.

• We now need the full p-calculus
o We need to create new channels to represent

new complexation bonds.
o We need value-passing so the components of a complex can

operate on those bonds: we need to pass channels over
channels.

2023-09-22Luca Cardelli 38

Complexation
A + B sr AB

There is no good notation for this reaction in chemistry: AB is considered
as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in p-calculus. Let there be a
single public association channel ar at rate r, and many private
dissociations channels ds at rate s, one for each complexation event
(these are dynamically created by the new-channel operator n):
Afree = (n ds) !ar(ds); Abound(ds)
Abound(ds) = !ds; Afree

Bfree = ?ar(ds); Bbound(ds)
Bbound(ds) = ?ds; Bfree

More compactly:

A = (n ds) !ar(ds); !ds; A
B = ?ar(ds); ?ds; B

Note that we are describing A independently of B: as in
the catalysis example, A could form complexes with
many different species over the ar channel.

2023-09-22Luca Cardelli 39

Polymerization

Mfree,free = ?a(b); Mbound,free(b) ⊕ (n b) !a(b); Mfree,bound(b)
Mbound,free(l) = !l; Mfree,free ⊕ (n b) !a(b); Mbound,bound(l,b)
Mfree,bound(r) = !r; Mfree,free ⊕ ?a(b); Mbound,bound(b,r)
Mbound,bound(l,r) = !l; Mfree,bound(r) ⊕ !r; Mbound,free(l)

Mfree,free

Mfree,bound

Mbound,free

Mbound,bound

Mfree,free | Mfree,free  (n b) Mbound,free(b) | Mfree,bound(b)

2023-09-22Luca Cardelli 40

Polymerization
• Polymerization is iterated complexation

o It can be represente in p-calculus finitely,
with one process (definition) for each monomer state.

o Note that polymerization cannot be described finitely
in chemistry (or ODEs) because there it needs one
reaction for each length of polymer.

o The reason it works in p-calculus is because of the n
operator. It enables the finite representation of
systems of potentially unbounded complexity.

o As in real biochemistry, where the structure of each
monomer is coded in a finite piece of DNA, and yet
unbounded-length polymers happen.

2023-09-22Luca Cardelli 41

Simulation
• It is possible to run simulations (particularly

Gillespie-like stochastic simulation)
• For reactive systems with very large or even

infinite numbers of species and reactions
(like polymerization or unbounded complex
formation) where it would be impossible to
even write them all down.

• Without ever computing all the reactions or
all the possible complexes

• By producing them only during the
simulation, as the need arises

• Without any kind of size cut-off or
approximation.

2023-09-22 42

Biochemistry vs. p-calculus

A  Ap

B  Bp

C  Cp

ABC  ApBC
ABC  ABpC
ABC  ABCp

ApBC  ApBpC
ApBC  ApBCp

ABpC  ApBpC
ABpC  ABpCp

ABCp  ApBCp

ABCp  ABpCp

ApBpC  ApBpCp

ApBCp  ApBpCp

ABpCp  ApBpCp

ABC
ApBC
ABpC
ABCp
ApBpC
ApBCp

ABpCp
ApBpCp

2n x 2n(2n-1)

2n
ABC1

2n
domain
reactions

complex
species reactions

(twice number of
edges in n-dim
hypercube)

2n(2n-1)

A, B, Cn
domains

Stoichiometric Matrix
(species x reaction),

The matrix is very sparse, so
the corresponding ODE system
is not dense. But it still has 2n

equations, one per species, plus
conservation equations
([ABC]+[ApBC]=constant, etc.).

System description is
exponential in the number
of basic components.

A  Ap

B  Bp

C  Cpdomain
reactions

A = ?kn;Ap Ap = ?ph;A
B = ?kn;Bp Bp = ?ph;B
C = ?kn;Cp Cp = ?ph;C

A | B | Cn

processes

(Its “run-time” behavior or
analysis potentially blows-up just
as in the previous case, but its
description does not.)

System description is
linear in the number of
basic components.

2n

2n

Applications

2023-09-22Luca Cardelli 44

Protein Machine
• Kappa is a (much) more convenient reactive system

modeling framework for biochemical systems

• It takes complexation and post-translational modification
as primitives, instead of encoding them by p-calculus
"plumbing” with channels-over-channels. In diagram
form, it looks very much like this, but with its own
peculiar syntax:

• Its kinetic laws are however more complex. The original
paper on Kappa [Danos, Laneve] gives a non-trivial
translation from Kappa to p-calculus.

• Kappa has since been used to model compactly, simulate,
and analyze biochemical systems of huge combinatorial
complexity [Fontana et al.] including stochastic kinetics.

• Its level of "rule-based" modeling approach is very close
to biochemical statements such as: "protein A is
phosphorylated on site 1 and then binds to protein B on
site 2"

2023-09-22Luca Cardelli 45

Gene Machine
Simulation of DNA replication fork dynamics and positional
occupation over the DNA sequence, compared to nanopore data.

2023-09-22Luca Cardelli 46

Membrane Machine
Static Compartments
Fragment of the hypothalamic system for body weight regulation
handling molecular events (receptors, signaling pathways and gene expression) within a
heterogeneous cell population sequestered to distinct anatomical compartments.

Dynamic Compartments
Qualitative model of a whole process of virus infection
and reproduction, including membrane topology transitions.

Conclusions

2023-09-22Luca Cardelli 48

Reactive Systems
• A model of computation

o Many flavors, but sharing common principles and techniques
o Suitable for nondeterministic concurrent systems with unbounded

execution, unbounded proliferation, and dynamical connectivity
o p-calculus as a minimal notation for general reactive systems

• A solution to combinatorial explosion
o Models are exponentially (for phosphorylation/ complexation) or

infinitely (for polymerization) more compact.
o The state space is explored incrementally, and even if the state space is

actually infinite (as with polymers) we can still expand it on demand and
simulate it with standard techniques.

• Further Reading
o R. Milner: Communicating and Mobile Systems: The Pi Calculus
o A. Regev, E. Shapiro. Cellular Abstractions: Cells as Computation. NATURE vol 419, 2002-09-26, 343.
o L. Cardelli: From Processes to ODEs by Chemistry. TCS 273, 261-281, 2008,
o V. Danos, C. Laneve. Formal molecular biology. TCS 325(1), 69-110, 2004.
o Pierre Boutillier et al. The Kappa platform for rule-based modeling. Bioinformatics. 34(13): i583–i592, 2018.

